Reserves Definitions & Estimation Techniques

By
Harold L. Irby
May 1998

1) Definitions
2) Company’s Process
3) Categories
4) Uncertainties
5) Estimation Process
6) Estimation Techniques
7) Calculation Example
Hydrocarbon Reserves -

are the estimates of technically recoverable quantities of crude oil, natural gas and natural gas liquids from naturally occurring accumulations which have been delineated and characterized by a combined analysis of available geo-scientific data (geological, geophysical, petro-physical and reservoir engineering etc.). To be developed, reserves must economically viable under the current and prevailing business environment. All reserves estimates involve some degree of uncertainty for which a reasonable assessment should be attempted.
Reserves Definition – By Reserves Category

Proved Reserves
Represents that portion of ultimate reserves which can be recovered with a high degree of certainty and/or a level of confidence based on actual or similar field performance (e.g. 80%) and using primary recovery, pressure maintenance and enhanced oil recovery (EOR) methods where their successes have already been demonstrated for that type of reservoir in that geological basin.

Probable Reserves
Represent that portion of additional reserves which can be recovered through a better than expected reservoir performance and/or reservoir engineering methods. Probable Reserves have a reasonable degree of certainty and/or confidence (e.g. 50%). Recovery and production methods are based on the same technology available for Proved Reserves.

Possible Reserves
Represent the ultimately recoverable resources which can be recovered with a relatively low degree of certainty and/or a minimal level of confidence (e.g. 15%). Possible Reserves represent the maximum ultimate recovery estimated for a known hydrocarbon accumulation once all testing, delineation and evaluation of this accumulation has been completed. Possible reserves are also incremental EOR Reserves not booked previously. Recovery and production methods are based on the same technology available for Proved Reserves.
Reserves Definition - SPE & SEC

• Reserves (SPE) -
 “Reserves are estimated volumes of crude oil, condensate, natural gas, natural gas liquids and associated substances/products anticipated to be commercially recoverable from known accumulations from a given date forward, under existing economic conditions, by established operating practices and under current government regulations. Reserve estimates are based on interpretation of geologic and/or engineering data available at the time of the estimate.”

• Reserves (SEC) -
 “Proved Oil and Gas Reserves: Proved oil and gas reserves are the estimated quantities of crude oil, natural gas and natural gas liquids which geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from known reservoirs under existing economic and operating conditions, i.e., prices and costs as of the date the estimate is made. Prices include consideration of changes in existing prices provided only be by contractual arrangements, but not on escalations based upon future conditions.”
Summary of Reserves Inputs / Outputs

Input Parameters

- Pore Volume (Pv)
- Reservoir Basic Data
- Production Data
- Recovery Factors

Reserves System

OOIP/OGIP Reserves
Categorization of Reserves & Resources

<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Degree of Geological Assurance and Engineering Certainty</th>
<th>Economic Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proved Reserves</td>
<td>A high probability</td>
<td>Definite</td>
</tr>
<tr>
<td>Probable Reserves</td>
<td>A moderated probability</td>
<td>Definite</td>
</tr>
<tr>
<td>Possible Reserves</td>
<td>A low probability</td>
<td>Most Likely</td>
</tr>
<tr>
<td>Potential Resources</td>
<td>Poor estimates of hydrocarbons in-place</td>
<td>Marginal or Undetermined (limited by data)</td>
</tr>
<tr>
<td>Conceptual Resources</td>
<td>Well-defined or conceptual exploration leads in a productive basin</td>
<td>Undetermined (limited data)</td>
</tr>
<tr>
<td>Speculative Resources</td>
<td>Exploration leads in an untested basin</td>
<td>Undetermined (lack of data)</td>
</tr>
</tbody>
</table>
Reserves Uncertainties & General Categories

• Technical Uncertainty - Geological / Geophysical / Reservoir Engineering

• Economic Uncertainty - Facilities Cost Estimates / Future Market Prices

• Geopolitical Uncertainty - Fiscal Regime Change / Markets

• General Categorizations - Based upon combination of technical / economic uncertainties and considerations:
 - Proved
 - Probable
 - Possible
 - Potential
 - Conceptual
 - Speculative
Reserves Estimation Process - Time Line

Development Stage

Risk

Reserves Estimation Methods / Techniques

Reserves Type

Depletion Stage

Production Profile

Rate (BPD)

Cumulative Production (STB)

Economic Limit

Reserves

Plateau

Probable

Possible

Proved

Production Operations

Low

Moderate

High

Very High

Exp.

Initial Dev.

Risk

Very High

High

Moderate

Low

Risk Analysis

Analogy

Volumetric

Model Studies

Performance/Material Balance

Decline Trend

Reserves Type

Possible

Probable

Proved

Plateau

Decline

Reserves Estimation Process - Time Line

Reserves Estimation Techniques

• Risk Considerations
• Volumetric
 - Deterministic
 - Stochastic
• Reservoir Analogy
• Material Balance Computations
• Decline Curve Analysis
Reserves Estimation – Risk Considerations

Geologic Risk and Uncertainty

Geologic uncertainty depends upon four mutually exclusive variables:

- Presence of Mature Source Rock (Ps)
- Present of Reservoir Rock (Pr)
- Presence of Hydrocarbon Trap (Pt)
- Structural / Migration Dynamics (Pd)

The risk associated with Geologic Uncertainty (Pg) can be assessed by these four mutually exclusive factors:

\[Pg = Ps \times Pr \times Pt \times Pd \]

Qualitatively:

- \(0.0 < Pg < 0.3 \) => Unfavorable
- \(0.3 < Pg < 0.5 \) => Questionable
- \(0.5 < Pg < 0.7 \) => Encouraging
- \(0.7 < Pg < 1.0 \) => Favorable
Engineering Risk and Uncertainty -
depends mainly on the amount and quality of geo-scientific / reservoir engineering data and is also affected by geological complexity, stage of development and degree of reservoir depletion.

Economic Risk and Uncertainty -
- Oil Prices
- Development & Production Cost (CAPEX & OPEX)
- Taxes and Royalties

Geo-Political Risk and Uncertainty -
is highly dependent upon the locale
Deterministic Reserves – Stochastic Reserves

Deterministic Model

- **Pore Volume** \((A, h & \Phi)\)
- **Swi, Boi**
- **Recovery Factor**

SINGLE RESERVES VALUE

Deterministic: Each INPUT and OUTPUT is determined as a single numerical value (usually average reservoir parameter values) and a single reserves number (i.e. an average) is derived.

Stochastic Model

- **Pore Volume** \((A, h & \Phi)\)
- **Swi, Boi**
- **Recovery Factor**

PROBABILISTIC RESERVES DISTRIBUTION

Stochastic: Each INPUT and OUTPUT parameter is assumed to be a random variable and can be represented by a probability distribution curve by use of Monte Carlo or Latin Hypercube simulation.
Deterministic Reserves – Volumetric Equation

Volumetric Reserves Equation (Oil)

\[\text{OOIP} = A \ h \ \phi \ (1 - \ Swi) / \ Boi = \text{Pore Volume} \ (1 - \ Swi) / \ Boi \]

Reserves = OOIP (STB) x Recovery Factor (fraction)

Recovery Factor or Efficiency

Recovery Factor = Displacement Efficiency (Ed) x Vertical Sweep Efficiency (Ei) x Areal Sweep Efficiency (Ea)

where:

- Displacement Efficiency, \(Ed = (\text{Soi} - \text{Sor}) / \text{Soi} \)
- Volumetric Sweep Efficiency, \(Ev = Ei \times Ea \)
Deterministic Reserves – Sweep Efficiency

Illustration of Water Flood Displacement Efficiency

Areal Sweep, \(E_a = 90\% \)

Vertical Sweep Efficiency: \(E_i = 0.25 \times 0.70 + 0.5 \times 1.0 + 0.25 \times 0.5 = 0.80 \) or 80%

Volumetric Sweep Efficiency: \(E_v = E_i \times E_a = 0.80 \times 0.90 = 0.72 \) or 72%
Stochastic Reserves – Probability Distribution

Probabilities of Recovery Reserves

<table>
<thead>
<tr>
<th>Category</th>
<th>Value (MMSTB)</th>
<th>Probability (%)</th>
<th>Recovery Factor (% OOIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proved</td>
<td>X = 677</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>Probable</td>
<td>Y = 745</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Potential</td>
<td>Z = 880</td>
<td>20</td>
<td>65</td>
</tr>
</tbody>
</table>

Where **OOIP** = 1,355 BSTB

Legend

- **PROVED**
- **PROVED + PROBABLE**
- **PROVED + PROBABLE + POTENTIAL**

ORIGINAL RESERVES (MMBSTB)

PROBABILITY THAT RESERVES > X-AXIS VALUE (%)
Field / Reservoir Analogy -
For undeveloped reservoirs without detailed reservoir engineering studies but with minimal geological / geophysical and petro-physical data then correlations established from model results and/or production histories of adjacent and/or similar fields within the geological basin may be used to estimate recovery factors and reserves.

Example Field / Reservoir Correlations -
Reservoir Analogy: (data shown in graphical form follows)

\[RF = \left(\% \text{ OOIP} \right) = -18.97 + 14.08 \times \ln \left(\frac{kh}{\mu_{oi}} \right) \]

Facies Analogy: (data shown in graphical form follows)

\[RF = \left(\% \text{ OOIP} \right) = +31.41 + 7.15 \times \ln \left(\frac{kh}{\mu_{oi}} \right) \]
Recovery Factor Correlation Developed by Using Carbonate Reservoir Data (Under Water Injection / Drive)

\[RF = (\%OOIP) = -18.97 + 14.08 \times \ln \left(\frac{kh}{\mu_{oi}} \right) \]

with \(r^2 = 0.98 \) & Standard Error of Estimated \(\pm 5\% \) @ 95\% Confidence Level and it may not be valid for \(\left(\frac{kh}{\mu_{oi}} \right) < 50 \).
Recovery Factor Correlation Developed by Using Carbonate Reservoir Data (Under Water Injection / Drive)

\[RF = \left(\%OOIP \right) = 31.41 + 7.15 \times \ln \left(\frac{kh}{\mu_o} \right) \]

with \(r^2 = 0.87 \) & Standard Error of Estimated = ± 13% @ 95% Confidence Level
API Correlations – Field / Reservoir Analogy

1. Water Drive Reservoirs (70 Sandstone Fields – c. 1867 API)

\[RE(\%OOIP) = 54.898 \left[\frac{\phi(1 - S_{wi})}{B_{oi}} \right]^{0.0422} \left[\frac{K\mu_{wi}}{\mu_{oi}} \right]^{0.0770} \left(\frac{P_i}{P_a} \right)^{-0.2159} \]

with \(r^2 = 0.92 \) & Standard Error of Estimate = ± 32% @ 95% Confidence Level.

2. Solution Gas Drive Reservoirs (Sandstones and Carbonates - 80 Reservoirs with 13 on Carbonates c. 1967 API)

\[RE(\%OOIP) = 41.815 \left[\frac{\phi(1 - S_{wi})}{B_{ob}} \right]^{0.1611} \left[\frac{K}{\mu_{ob}} \right]^{0.0979} \left(\frac{S_{wi}}{P_i} \right)^{0.3722} \left(\frac{P_{b}}{P_{a}} \right)^{0.1741} \]

with \(r^2 = 0.87 \) & Standard Error of Estimate = ± 40% @ 95% Confidence Level.

3. Water Drive Reservoirs (Carbonates - 19 Reservoirs - c. 1983)

\[RE \ (\%\ OOIP \) = 52.70 \left[\frac{\phi(1 - S_{wi})}{B_{oi}} \right]^{0.4068} \left[\frac{K\mu_{oi}}{\mu_{wi}} \right]^{0.0337} \left(S_{wi} \right)^{-0.04096} \]

with \(r^2 = 0.58 \) & Standard Error of Estimate = ± 20% @ 95% Confidence Level.

Source: A Statistical Study of Recovery Efficiency, API Bulletin D14, October 1967. Based on limited number of reservoir case histories in U.S.A. only.
Recovery Factor (Primary) – Material Balance

Solution Gas Drive Reservoir

- OOIP: 1.84 MMBbls
- Pres: 1350 psia
- Pb: 850 psia
- Rec. Fac.: 19%
- Reserves: 350 MBbls
Deterministic Reserves – Decline Curve Analysis

MODEL OOIP : 20.73 BSTB
DATA : Long-Term Prediction (with Gas Lift)
Method : Decline Curve Analysis (Harmonic)
ECONOMIC LIMIT : 5% Oil Cut
RESERVES : 15.2 BSTB
RECOVERY FACTOR : 73.3% OOIP

Np, CUMULATIVE PRODUCTION (MMSTB)
Calculation of Oil In Place - Example

Step 1: Calculate Original Oil In Place –

\[\text{OOIP} = \text{Pore Volume} \times \text{Oil Saturation} \times \text{Oil Shrinkage} = \text{Oil Volume} \times \text{Oil Shrinkage} \]

BULK VOLUME =
Rock & Fluid Volumes

PORE VOLUME =
Oil & Water Volumes

EXAMPLE

<table>
<thead>
<tr>
<th></th>
<th>Original Conditions</th>
<th>End of Waterflood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Volume</td>
<td>BV (MM Barrels)</td>
<td>100 (assumed)</td>
</tr>
<tr>
<td>Rock Volume</td>
<td>RV (MM Barrels)</td>
<td>80</td>
</tr>
<tr>
<td>Pore Volume</td>
<td>PV (% BV=Porosity)</td>
<td>20 %</td>
</tr>
<tr>
<td>Pore Volume</td>
<td>(MM Barrels)</td>
<td>20</td>
</tr>
<tr>
<td>Water Volume</td>
<td>(% PV=Water Saturation)</td>
<td>15 %</td>
</tr>
<tr>
<td>Water Volume</td>
<td>(MM Barrels)</td>
<td>3</td>
</tr>
<tr>
<td>Oil Volume</td>
<td>(% PV=Oil Saturation)</td>
<td>85 % (initial)</td>
</tr>
<tr>
<td>Oil Volume</td>
<td>(MM Barrels)</td>
<td>17</td>
</tr>
<tr>
<td>Oil Gravity</td>
<td>(API)</td>
<td>36 °API</td>
</tr>
<tr>
<td>Oil Shrinkage</td>
<td>(Fraction)</td>
<td>0.67</td>
</tr>
<tr>
<td>OOIP (MM Stock Tank Barrels)</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of Recovery Factor and Reserves

Step 2: Calculate Recovery Factor and Reserves –

OIL RESERVES = OOIP (barrels) x Recovery Factor (fraction)

<table>
<thead>
<tr>
<th>Recovery Factor = Displacement Efficiency (Ed) x Volumetric Sweep Efficiency (Ev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed = (Soi - Sor) / Soi or = (Original Oil Vol. – Remaining Oil Vol.) / Original Oil Volume = (0.85 - 0.30) / 0.85 or (17 - 6) / 17 = 0.65 or 65% OOIP</td>
</tr>
<tr>
<td>Ev = Vertical Sweep Efficiency x Areal Sweep Efficiency = 0.80 x 0.90 = 0.72 or 72% (see illustration of water flood figure)</td>
</tr>
</tbody>
</table>

Recovery Factor = 0.65 x 0.72 = 0.47 or 47% OOIP

OIL RESERVES = (11 x 0.47) = 5 MM Stock Tank Barrels

Summary of Example Calculation:

<table>
<thead>
<tr>
<th>VOLUME :</th>
<th>Bulk</th>
<th>Pore</th>
<th>OOIP</th>
<th>Reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM BBL :</td>
<td>100</td>
<td>20</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>
• Thank You